Exercise 22

(a) How long will it take an investment to double in value if the interest rate is 6% compounded continuously?
(b) What is the equivalent annual interest rate?

Solution

Part (a)

If the interest is compounded continuously, the value of an investment after t years is

$$
A(t)=A_{0} e^{r t},
$$

where A_{0} is the initial investment and r is the interest rate. To find how long it will take an investment to double with 6% interest, set $r=0.06$ and $A(t)=2 A_{0}$ and solve the equation for t.

$$
\begin{gathered}
2 A_{0}=A_{0} e^{0.06 t} \\
2=e^{0.06 t} \\
\ln 2=\ln e^{0.06 t} \\
\ln 2=(0.06 t) \ln e \\
t=\frac{\ln 2}{0.06} \approx 11.5525 \text { years }
\end{gathered}
$$

Part (b)

In order to double an initial investment in this time with annual compound interest, solve the following equation for r.

$$
\begin{aligned}
A(t)=A_{0}\left(1+\frac{r}{n}\right)^{n t} \rightarrow \quad 2 A_{0} & =A_{0}\left(1+\frac{r}{1}\right)^{1\left(\frac{\ln 2}{0.06}\right)} \\
2 & =(1+r)^{(\ln 2) / 0.06} \\
\ln 2 & =\ln (1+r)^{(\ln 2) / 0.06} \\
\ln 2 & =\left(\frac{\ln 2}{0.06}\right) \ln (1+r) \\
0.06 & =\ln (1+r) \\
e^{0.06} & =1+r
\end{aligned}
$$

Solve for r.

$$
r=e^{0.06}-1 \approx 0.0618365
$$

Therefore, to double the money in 11.5525 years, the annual interest rate would have to be about 6.18%.

